Differential alkylation-based redox proteomics – Lessons learnt

نویسندگان

  • Katarzyna Wojdyla
  • Adelina Rogowska-Wrzesinska
چکیده

Cysteine is one of the most reactive amino acids. This is due to the electronegativity of sulphur atom in the side chain of thiolate group. It results in cysteine being present in several distinct redox forms inside the cell. Amongst these, reversible oxidations, S-nitrosylation and S-sulfenylation are crucial mediators of intracellular redox signalling, with known associations to health and disease. Study of their functionalities has intensified thanks to the development of various analytical strategies, with particular contribution from differential alkylation-based proteomics methods. Presented here is a critical evaluation of differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is to assess the current status and to provide insights for future directions in the dynamically evolving field of redox proteomics. To achieve that we collected 35 original research articles published since 2010 and analysed them considering the following parameters, (i) resolution of modification site, (ii) quantitative information, including correction of modification levels by protein abundance changes and determination of modification site occupancy, (iii) throughput, including the amount of starting material required for analysis. The results of this meta-analysis are the core of this review, complemented by issues related to biological models and sample preparation in redox proteomics, including conditions for free thiol blocking and labelling of target cysteine oxoforms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted quantitation of site-specific cysteine oxidation in endogenous proteins using a differential alkylation and multiple reaction monitoring mass spectrometry approach.

Reactive oxygen species (ROS) are both physiological intermediates in cellular signaling and mediators of oxidative stress. The cysteine-specific redox-sensitivity of proteins can shed light on how ROS are regulated and function, but low sensitivity has limited quantification of the redox state of many fundamental cellular regulators in a cellular context. Here we describe a highly sensitive an...

متن کامل

The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo

Hydrogen peroxide (H2O2) evolves during cellular metabolism and accumulates under various stresses causing serious redox imbalances. Many proteomics studies aiming to identify proteins sensitive to H2O2 used concentrations that were above the physiological range. Here the chloroplast proteins were subjected to partial oxidation by exogenous addition of H2O2 equivalent to 10% of available protei...

متن کامل

Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis.

Differential protein expression analysis based on modification of selected amino acids with labelling reagents has become the major method of choice for quantitative proteomics. One such methodology, two-dimensional difference gel electrophoresis (2-D DIGE), uses a matched set of fluorescent N-hydroxysuccinimidyl (NHS) ester cyanine dyes to label lysine residues in different samples which can b...

متن کامل

Lessons learnt from errors in radiotherapy centers

Background: The purpose of this work is to discover and analyze errors and incidents in some radiotherapy centers, and to introduce methods that could reduce their occurrences, especially those which had happened due to the use of improper and inadequate equipment. This work is a first step toward clarifying the role of education in a risk-conscious culture, and changing the attitude of radioth...

متن کامل

Reduction and Alkylation of Proteins in 2D Gel Electrophoresis: Before or after Isoelectric Focusing?

Two-dimensional gel electrophoresis (2DE) is a well-developed, high-resolution technology to separate complex mixtures of proteins. This technique has been widely used for the past four decades, and has played a vital part in the developmental history of proteomics. The advantages and limitations of 2DE in proteomics research have been reviewed (e.g., Thelen and Peck, 2007; Oliveira et al., 201...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015